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A numericai method for computing three-dimensional! unsteady incompressible flows is 
presented. The method is a predictor-corrector technique combined with a fractional step 
method. Each time step is advanced in three sub-steps. The novel feature of the present 
scheme is that the Poisson equation for the pressure is soived only at the final sub-step 
resulting in substantial savings in computing time. It is shown that the method ailows a larger 
CFL number and reduces the computing cost without loss of accuracy by satisfying the 
continuity equation only at the last sub-step. Numericai solutions for the decaying vortices 
and flow over a backward-facing step are obtained and compared with analyticai and other 
numerical results. i_ 1991 Academic Press. Inc. 

1~ INTRODUCTION 

For three-dimensional, time-dependent incompressible Navier-Stokes equations, 
Kim and Moin [I ] developed a fractional step, or time-splitting, scheme in con- 
junction with the approximate factorization technique. The convective terms were 
advanced using the second-order-explicit Adams-Bashforth scheme and the second- 
order-implicit Crank-Nicolson was used for the viscous terms. This method is 
second-order accurate in space and time. 

The objective of this paper is to present a modification to Kim and Main’s (KM) 
scheme that reduces the restrictions on the time step with simultaneous reduction 
in computing effort at each time step. The method is based on a ~re~ictor~orrector 
algorithm which is of the Runge-Kutta genre [2, 31. Every time step is advanced 
in three sub-steps, each of which uses an explicit treatment in the convective terms 
and implicit in the viscous terms. The KM time-splitting method is incorporated at 
each sub-step. Et is well known that the predictorcorrector scheme allows a higher 
stability hmit, CFL, based on the full time step. However, the time-sphtting method 
requires that the Poisson equation for the pressure be solved at each sub-step. The 
main novelty of the present scheme is that the velocity field is advanced through the 
sub-steps without satisfying the continuity equation. The Poisson equation s used 
to project the predicted vector field into a divergence-free velocity field only at ~3~ 
final sub-step. A modification to the terms in the Navier-Stokes epatiou is czecessa;rll’ 
because comemation of mass is not satisfied at rhe sub-steps. The boundary condi- 
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tions for the intermediate velicity field are derived accordingly using the method 
similar to that of LeVeque and Oliger [4]. The present method is developed for a 
staggered grid [S]. 

Section 2 briefly presents the numerical procedures of combined Runge-Kutta 
and fractional step method. Section 3 shows the modification for the present 
method. The derivation for the boundary conditions for the intermediate velocity 
field is presented in Section 4. Section 5 provides the numerical results for two- 
dimensional decaying vortices in a box and two-dimensional flow over a backward 
facing step; a summary is presented in Section 6. 

2. ALGORITHMS FOR THE COMBINED RUNGE-KUTTA AND FRACTIONAL STEP 

In this section, we incorporate a predictor-corrector scheme (of the Runge-Kutta 
genre) to the KM time-splitting method. That is, we simply replace the 
Adams-Bashforth/Crank-Nicolson combination used by KM with a semi-implicit 
Runge-Kutta type scheme. The three-dimensional Navier-Stokes and continuity 
equations are non-dimensionalized by a characteristic length and velocity scale: 

au. a 1 iT2Z4i ap -= ---u-u.+- 
at a.yj 1 J Re axjaayj axi' i= 1,2, 3, (2.1) 

A three-step time advancement scheme for Eqs. (2.1) and (2.2) can be written 
as [3]: 

&-&I 
I I 

At 
=ClkL(z4k--)++PliL(U~)--l’kN(U:~’) 

-&V(U:2)-(CC,+B*)g, i= 1, 2, 3, (2.3) 
’ 1 

6u;/6.xi = 0, (2.4) 

where k = 1, 2, 3 denotes the sub-step number, k - 2 is ignored for k = 1; UP and z.4: 
are the velocities at time step n and n + 1; 6/6x, is the finite difference operator; and 
L(u;) and N(ui) represent second-order finite difference approximations to the 
viscous and convective terms, respectively: 

1 s2u- 
L(q) = - --f- 

Re dsj 6x, 

6 
N(u,) = - uiuj. 

&u, 
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Equation (2.3) represents the time advancement of the Navier-Stokes equation at 
each sub-step. The coefficients ak, flk, ykT and ik, k = I, 2, 3 are constants selected 
such that the total time advancement between t” and +* + ’ is third-order accurate L 
for the convective term and second-order for the viscous term [?I. These coeE- 
cients are: 

8 5 1 ylzlj -,!‘; = 3 -’ - 1:-5 

j, (‘xk+flk)= ; !yk+ik)= L. 
k=I 

As shown in [2], this time advancement scheme, which belongs to the family of 
Rumge-Kutta schemes, requires two storage locations per variable at each step, At 
each sub-step, the convective term (N) is advanced explicitly: and the viscous term 
(L) advancement is implicit. Strictly, the overall time-advancement is third-order 
on N and second order on L. The numerical stability is restricted by the explicit 
treatment of the convective terms. The stability limit. CFL = 4r(/u(max)il/4.t-i), is 
,is based on the total time step 4~. This ailows a larger time step than the KM 
method at the expense of three evaluations of the non-linear and viscous terms ner 
step. 

Since the divergence free condition is enforced at all sub-steps by Eq. i2.4) each 
silb-step requires as much work as one 4 t advancement. The effective time step for 
(2.3) is (ak i gk) At. We now apply the fractional step of KM to (2.3) and (2.4 j. As 
shown in [I], the accuracy of the fractional step method is second-order in 4~. 
provided that the primary time advancement schemes (e.g., AdamssBashforth and. 
Crank--Nicolson) are second-order accurate. Thus second-order accuracy is 
retained when this method is used in conjunction with schemes stict as 

unge--Kutta method. The result is 

where 4” and Pk are related by 
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tn+’ = tn + At 
FIG. 1. Combined Runge-Kutta and fractional-step time advancement: __ original scheme; 

- - - present scheme. 

Equation (2.6) combined with the divergence free constraint (2.4) gives the 
discrete Poisson equation: 

1 szi’i h2(bk -I=- 
At bXj 6Xi 6Xi’ (2.8) 

Equations (2.5) and (2.8) are solved at each sub-step for U$ and dk. The 
schematic diagram showing the steps taken with the above scheme is shown 
in Fig. 1. Note that the vertical arrows represent enforcement of the continuity 
equation at each sub-step. 

The advantag? of the scheme in Fig. 1 are: (a) allowing relatively large time 
steps (CFL = J3) and (b) requiring low memory storage [2]. However, all 
calculations in Eqs. (2.5) and (2.8) must be repeated at each sub-step. This causes 
a significant increase in computing cost, particularly in solving the Poisson equa- 
tion. We will next modify Eq. (2.5) to eliminate the need for the Poisson equation 
at the sub-steps. 

3. MODIFICATION OF VELOCITY ADVANCEMENT 

Equations (2.5) and (2.6) as applied to the first sub-step are 

(3.1) 

II= 2w u! - lif 
At 6Xi ’ (3.2) 
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At the second sub-step, E,q. 3.3 below represents the advancement without iime- 
splitting: 

Substituting for U: in (3.3) using (3.2), and time-splitting yield the following aigo- 
rithms for the second substep: 

and 

Note that, in Eq. (3.4), iii denotes the velocity field without the pressure correc- 
tion; whereas lli in Eq. (3.3) is the divergence-free velocity field. 

Without solving the Poisson equation at the first sub-step, dj 6#‘/6.~, in Eq. (3.4) 
is unknown. This term is approximated by the gradient of 4 at the end of the 
previous time step, 6qY’,‘&xi. It can easily be shown that this substitution maintains 
the second-order accuracy of the overall scheme. From Eq. (2.7) 

But. 

-I-bus, 
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Furthermore, P = CJ~ + O(dt), [ 11, the resulting approximation of At &$‘,/Ss, 
which maintains second-order accuracy in time is 

(3.6) 

The same procedure is repeated for the final sub-step. The generalization of 
Eqs. (3.4) and (3.5) for all three sub-steps is 

-ykN(zi*k-l ) - [kN(z4*k-2), k = 1, 2, 3, (3.7) 

Wk $k - tjk I= 
At 6x, ’ (3.8) 

where 

and 

z4i *O= Z4;. 

The approximation for b$k/6xj is 

(3.9) 

As illustrated in Fig. 1, Eq. (3.7) allows calculating lij at every sub-step without 
projecting into the divergence free velocity field. The projection into the divergence 
free field, and hence the solution of the Poisson equation, is required only at the 
last sub-step. This results in a significant reduction in computational cost. The time 
advancement accuracy remains second-order. Note that, compared to Eq. (2.5), 
Eq. (3.7) appears to require additional computations due to the terms C%- ‘/6.x, 
and 6@,/6xj. However. these calculations are also required by the original method 
at every sub-step. 

4. BOUNDARY CONDITIONS 

In the previous scheme described in Section 2, each sub-step is considered as one 
complete time advancement of ui with an effective time step (ak + fik) At. The KM 
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method [I] of calculating boundary conditions for Gi can then be applied at each 
substep: 

However, this procedure cannot be used in the present scheme because without 
solving the Poisson equation, the sub-step advancement of ui is not complete. The 
boundary conditions for lif are thus calculated by applying Eq. (3.8) directly at the 
boundaries: 

@*” 
Ljk=ld,?k+At- 

6Si ’ 
k = 1. 2, 3. I,&%) 

Using (4.2) at the Iast sub-step, k= 3, and substituting Eq. (3.9 j for 6&*+ ‘~SX, 
gives 

Now fi: and fif can be calculated by linear interpolation without !oss of accuracy. 
The algorithm for ti” is 

Equation (4.4) gives the boundary conditions for tif accurate to O(At”). 

5. NUMERICAL EXAMPLES 

The proposed scheme is independent of the number of spatial dimensions and 
can be used for two- and three-dimensional flows In the numerical examples 
presented below, the flows considered are two-dimensional. In all subsequent corn- 
parisons, the original Runge-Kutta scheme in which the divergence free velocity 
field is enforced at every sub-step (Eqs. (2.5), (2.6), and (2.8)) will be referred to as 
scheme A; the present scheme with the Poisson equation solved oniy at the las: 
sub-step will be referred to as scheme B; and the KM scheme denotes the Kim and 
Main method [I 11. 

5.1. Decaying Vortices 

The proposed scheme and the boundary conditions derived above are tested jn 
computing the foilowing two-dimensional unsteady flow [6]: 
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u(x, 4: t) = - cos x sin JE-” (5.1) 

0(x, J’, t) = sin x cos ye ” (5.2) 

P(x, y, t) = - $(cos 2x + cos 2y je -4r 

0 < x, y < iT. 

(5.3) 

Computations were carried out for both schemes A and B. The same Courant 
number is used for both schemes. Table I shows the maximum error in II for the 
two schemes as compared to the exact solution. Comparison is at t = 0.35 at which 
the vortices decay to half their original strength. 

The variation of the maximum error in u with mesh refinement is also plotted in 
Fig. 2. Keeping the Courant number constant, three different mesh sizes are used to 
determine the overall accuracy of the scheme. Figure 2 shows that both schemes are 
second-order accurate. Similar calculations for o yield the same results. The 
comparison in Table I and Fig. 2 indicates that, with proper modification to the 
Runge-Kutta type scheme, the Poisson equation can be eliminated from the 
sub-step time advancement without reducing the accuracy. 

5.2. Flow ouer a Backward-Facing Step 

The flow over a backward-facing step in a channel provides another comparison 
among the three schemes. Computations are performed on a two-dimensional 
laminar flow. The inflow boundary condition is a parabolic profile. The outflow 
boundary is located at 30h downstream from the step, where h is the step height. 
Convective bounary condition is applied at the exit. Results are obtained using a 
staggered grid with 128 x 32 cells. The reattachment length is plotted as a function 
of Reynolds number in Fig. 3 for all three schemes. The Reynolds number is based 
on the step height and the mean inlet velocity. 

Figure 3 shows the agreement of all three schemes in predicting the reattachment 
length of the laminar flow over a backward-facing step. Indistinguishable results are 
also obtained by these schemes with half the time step, a further confirmation that 
the time accuracy of scheme B is not reduced. 

TABLE I 

Maximum Error at I = 0.35 : E,,, 

Grid Scheme A 

16 1.9539 x 10 -4 
32 3.0052 x 10-j 
64 6.0019 x 10m6 

Scheme B 

1.9769 x 1O-4 
3.0399 x 10 --5 
5.9337 x 10m6 
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Mesh Size, N 

FIG. 2. Maximum error as a function of mesh refinement. 

5.3. CPU Comparison 

Comparison was made of the computational effort required for each of the 
numerical schemes for a given integration time T. TFhe backward facing step calada- 
tions were used for this purpose. 

By eliminating the Poisson equation at the sub-steps, the required CPU time per 
time step, dr, for scheme B is 62% of scheme A. Thus, a reduction of 38% la, 
computation time is achieved. 

Comparison with the KM scheme is more subjective because the MM scheme is 
a one-step method whereas schemes A and B require three sub-steps. For a given 
time step dt, scheme B requires 1.75 times the CPU time of the KM scheme due 
to repeated calculations in three sub-steps. However, a higher stability limit, CE;L,, 
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FIG. 3. Reattachment Length vs Reynolds Number. 

in schemes A and B allows a larger At than that of the KM scheme. For schemes 
A and B, the CFL limit is a. It is difficult to set the CFL limit for the KM scheme 
because it involves the Adams-Bashforth method which is strictly unstable for the 
linear convective model problem. The stability of the KM scheme is, therefore, 
dependent on the presence of the viscous terms and on the Reynolds number. For 
comparison purposes in this study, a nominal CFL limit of 0.5 was used for the 
KM scheme. Based on these CFL limits, the At for scheme B can be 3.46 times 
larger than that of the KM scheme. Therefore, for a given integration time T, 
scheme B achieves an overall CPU time saving of 49% over the KM scheme. 

Our implementation of scheme B on the CRAY-YMP was executed at 175 
million floating point operations per second. 
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6. SUMMARY 

A numerical method is presented for solving three-dimensional, unsteady 
The method is the fractional-step method combined with a three-step Runge- 
type scheme. In the first two sub-steps, the velocity field is advanced without the 
divergence free constraint; the Poisson equation is solved directiy by a transform 
method only at the last sub-step to satisfy the continuity equation The method is 
second-order accurate in space and time. The results show that, with proper 
modification of the non-linear terms, the Poisson equation does not need to be 
solved at every sub-step which significantly reduces computing cost while still main- 
tains the desired accuracy. The concept imbedded in this method can in principle 
be applied to higher order Runge-Kutta type advancement schemes 
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